GET3D (Nvidia)

GET3D is NVIDIA’s AI model that generates detailed, textured 3D meshes directly from 2D images. Ideal for gaming, animation, and virtual world creation—no 3D scanning required.

Ir para a IA
GET3D (Nvidia) cover

Postagens relacionadas

About GET3D

What is GET3D?

GET3D is an advanced generative model developed by NVIDIA that creates high-quality, textured 3D meshes directly from 2D image collections. Unlike traditional 3D modeling pipelines that require scans, sensors, or CAD tools, GET3D leverages deep learning to generate complex 3D objects—ready to use in animation, games, and virtual production.

Um salto na criação de conteúdo 3D

Treinado com aprendizado adversário e renderização diferenciável, o GET3D pode produzir objetos diversos com texturas e geometria realistas. Ele gera malhas de alta fidelidade, topologia arbitrária e detalhes de materiais complexos, preenchendo a lacuna entre a IA e ativos 3D prontos para produção.

How GET3D Works

Latent Space Representation

GET3D generates two distinct latent codes: one for shape (geometry) and another for texture. These are used to produce a signed distance field (SDF) and a texture field that define the 3D mesh and surface appearance.

Mesh Extraction & Texturing

Using DMTet (Deep Marching Tetrahedra), GET3D converts the SDF into a triangular mesh. Then, it queries the texture field to paint the mesh with detailed color and material features.

Training with 2D Discriminators

O GET3D é treinado usando imagens 2D e silhuetas com perdas adversas. A renderização diferenciável permite que o modelo retropropague erros do espaço da imagem para o espaço 3D, permitindo o aprendizado sem supervisão 3D explícita.

Key Capabilities of GET3D

High-Quality 3D Meshes

GET3D generates textured 3D objects with fine details such as headlights, seams, fur, and reflections—making it suitable for animation and simulation tasks.

Arbitrary Topology Support

Unlike many earlier models, GET3D can generate complex, non-rigid shapes across a wide range of categories including animals, vehicles, furniture, shoes, and human avatars.

Controle desembaraçado de forma e textura

GET3D separates geometry and texture into distinct latent codes. Users can independently manipulate either aspect to achieve greater control in asset generation.

Interpolação de Código Latente

By interpolating between latent vectors, GET3D enables smooth transitions and morphing between shapes and textures. This feature is useful for animation, asset variation, and design iteration.

Text-Guided Generation

Incorporating CLIP-based directional loss (as seen in StyleGAN-NADA), GET3D supports text-guided shape generation. Users can fine-tune outputs using natural language prompts for creative control.

Efeitos de materiais e iluminação

When combined with DIBR++ (a hybrid renderer), GET3D can also simulate materials and lighting effects in an unsupervised fashion, enhancing realism in renders.

Aplicações do GET3D

Gaming & Interactive Media

Game developers can rapidly generate character models, props, and environments with consistent geometry and texture, significantly reducing manual modeling time.

Animação e Produção Cinematográfica

O GET3D permite a prototipagem rápida de ativos estilizados ou fotorrealistas com variação de design flexível e exportação direta para pipelines de renderização.

Virtual Reality & Metaverse

Ideal for VR creators, GET3D provides a scalable way to populate virtual spaces with high-quality 3D content—without the need for traditional scanning or modeling.

E-commerce 3D e Gêmeos Digitais

Retailers and industrial designers can use GET3D to visualize products in 3D from catalog images, enhancing interactive shopping and simulation workflows.

Destaques da Pesquisa

  • Disentangled Geometry and Texture: Independent control of mesh shape and surface appearance.
  • Adversarial Image-Based Training: No 3D labels or models required—just image collections.
  • Latent Code Interpolation: Smooth transitions between different shapes and styles.
  • Alta compatibilidade: gera formatos de malha padrão compatíveis com Blender, Unity, Unreal e outros mecanismos.

Project Origins & Contributors

GET3D is the result of collaborative research between NVIDIA, the University of Toronto, and the Vector Institute, presented at NeurIPS 2022. It builds on prior work like DMTet, EG3D, and DIBR++, further advancing 3D generative modeling.

Resources and Access

  • GET3D GitHub & Codebase
  • Research Paper PDF & arXiv
  • Informações sobre citações e BibTeX disponíveis na página do projeto

Ferramentas Alternativas