Helicone
Observabilité et surveillance LLM open source
Sagify accelerates machine learning and LLM deployment on AWS SageMaker with minimal configuration. Streamline training, tuning, and deployment using a unified, no-code-friendly interface.
Sagify est un outil convivial pour les développeurs qui simplifie la création et le déploiement d'applications de machine learning (ML) et de modèles de langage étendus (LLM) sur AWS SageMaker. Il offre une interface de ligne de commande claire et une structure modulaire permettant aux utilisateurs de se concentrer sur le développement des modèles plutôt que sur l'infrastructure.
Whether you’re a solo developer, part of a data science team, or building AI products at scale, Sagify offers a practical framework to move from prototype to production faster, without managing low-level cloud configurations.
Sagify lets you train, tune, and deploy models with a single command. You only need to write your model logic—Sagify takes care of provisioning, scaling, hyperparameter tuning, and deployment to AWS SageMaker.
Sagify includes an LLM Gateway that connects to both proprietary models (like OpenAI or Anthropic) and open-source models (like LLaMA or Stable Diffusion). This lets you use different models via a single REST API, reducing integration overhead.
Sagify deeply integrates with SageMaker, allowing automated Docker builds, training jobs, model deployments, and batch inference through simple CLI commands. It supports spot instances, resource tagging, and hyperparameter optimization.
Vous pouvez déployer Hugging Face, OpenAI ou des modèles de fondation personnalisés à l'aide de modèles prédéfinis, sans avoir besoin d'écrire du code ou de configurer l'infrastructure manuellement.
La passerelle LLM offre une interface cohérente pour envoyer des invites, recevoir des complétions, générer des images ou extraire des intégrations entre plusieurs fournisseurs. Elle est idéale pour les applications qui doivent changer de fournisseur LLM ou tester ses performances sans réécrire la logique back-end.
Sagify supports running the LLM Gateway locally via Docker or deploying it to AWS Fargate. This flexibility allows you to prototype locally and scale in production effortlessly.
Sagify supports large-scale batch processing of ML or embedding jobs using S3 and AWS SageMaker. Ideal for recommendation systems, search indexing, and offline predictions.
With support for Bayesian optimization, you can fine-tune your models for better performance. Sagify provides all the tools needed to define parameter ranges, set objectives, and monitor results directly through AWS.
Sagify includes both a Python SDK and a full-featured CLI. This dual interface allows you to automate workflows within your apps or manage experiments interactively from the terminal.
The tool is built around a modular structure, making it easy to replace or extend components such as model logic, endpoints, or training configurations without affecting the overall pipeline.